Precision Power Meter LMG95

The most precise in its class.

- Basic accuracy 0.015% of reading + 0.01% of range
- Precision range DC...500kHz
- Analysis of devices and components in switched or modulated operation
- Harmonics and flicker according to EN61000-3-2/-3/-11/-12
LMG95. Precise. Direct. All Waveforms.

The LMG95 single-phase precision power meter is an outstanding product in the proven LMG series of ZES ZIMMER® precision power measuring devices. Highly accurate continuously gapless signal measurement and processing, ergonomic operation and presentation of the results, interfaces with high data rates for efficient system applications – these are the performance features which distinguish the LMG95.

All Waveforms

The high precision power measurements on components and devices that are required in development, quality assurance and manufacturing can be performed with ease, independent of whether the current and voltage are sinusoidal or distorted, whether the load is linear or not, or whether the circuit works in a chopped, pulsed or another modulation mode. The extended possibilities of synchronization on the periodicity of the measured signal always produce distinct and stable measurement displays and results.

Direct up to 600V and 20A

Isolated measurement inputs with direct measurement ranges up to 600V (1600Vpeak) and 20A (960Apeak for the measurement of inrush currents) and the input for current measurements using a shunt or other transducer measure the incoming measurement signals exactly and without any aberrations.

0.015% of Reading + 0.01% of Range

With a basic accuracy of 0.025% is this the most precise instrument in its class and therefore it is used as a reference device for energy meters, power meters, power measurement transformers and trms meters for current and voltage.

Harmonics and Flicker in Full Compliance with EN61000-3-2/-3/-11/-12

The harmonic analysis in full compliance with the EN61000-3-2/-12 standard is already available in the basic unit. The flicker meter in compliance with EN61000-4-15 for the measurement of flicker (voltage variations) and with EN61000-3-3/-11 is available as an option. These two functions also considerably extend the possible applications of the LMG95 in R&D laboratories. If suitable stable voltage sources are available, tests for CE compliance can be performed in accordance with EN61000-3-2/-3/-11/-12.

Analyzers in CE Test Systems

The LMG95 is used as an analyzer in CE test systems to test electrical devices on harmonics and flicker and their effect on mains.

The ZES ZIMMER® test system CE-Test61k is usually equipped with a precision power meter LMG500 for 3-phase application or with a LMG95 for single-phase applications. Components can also be ordered and used separately, easy integration of customer owned power sources.

Charging current of a switching power supply

Phase-angle control

PWM frequency inverter

Measurement of the amplitude spectrum of the voltage harmonics in the HRM100 mode. An increase in the 47th and 49th, the frequency of the fundamental amounts to fn/47=26.25Hz
Electronic transformer

Electronic 12V transformer to supply a halogen lamp.
Amplitude modulated 150 kHz carrier with 100Hz envelope.

Burst firing control of a hot-air fan

Amplitude spectrum with the help of the HRM100 harmonic analysis. The burst fire presents a 1.56Hz modulation of the carrier (50Hz mains voltage). The DC component of the spectrum results from the blower motor in half-wave operation. The extended “X-Trig” trigger mode detects the 1.56Hz periodicity which is used for synchronization.

Harmonic analysis

Using the plot function, the half-wave trms values U_t are plotted over time (lower curve B). There are irregular sags of about 8V. The momentary flicker P_{mom} resulting from these changes is visualized by curve A.

Flicker measurement

Switch-on current of a fluorescent lamp ballast measured in the transient mode

Switch-on current of a fluorescent lamp ballast. The iron is not saturated.

Inrush current of a transformer

In the moment when the currentless, non-magnetized transformer is switched on, a multiple of the nominal current is required to build up the necessary flux. The iron goes rapidly into saturation. Here $I_{inr}/I_{trms}=12.9$.
The magnetizing current I flowing in the primary winding is fed into the current input of the LMG95, and the induced voltage at the open secondary winding is fed into the voltage input. In this way, only the core losses (magnetizing losses) are measured, and not the copper losses. The half-wave rectified voltage value, also measured with the LMG95, is a measure of the voltage time area, and therewith for the induced flux. With the formula editor, the values for a B-H characteristic curve can be calculated from the measured electrical values and the geometrical data of the core.

Up to 8 device settings can be stored with a name, details of the EUT etc. with “Save” and retrieved again with “Recall”. This provides for a high level of user convenience if measurements are made alternately on different EUTs.

The instantaneous values of $u(t)$, $i(t)$, $p(t)$ can be output with a sample rate of 100kHz/s. Via the process signal interface the values can be sent to the EUT or a simulation for testing the dynamic control. Fast HIL controls require the instantaneous values rather than values that are delayed and averaged over the measuring cycle (≥ 50ms).

The Energy Star originally started in Northern America and has spread all over the world. For being marked with the Energy Star, a product has to meet a defined threshold. For example, in the USA a newly introduced refrigerator has to save 20% relative to the current maximum admissable consumption. A precise power meter is necessary for both the R&D of a new product and tests in the field whether it meets the specified savings.
EuP - Energy using Products

The directive 2005/32/EC defines ecodesign requirements for household appliances and office machines. It regulates the admissible energy consumption while a product is in use as well as the energy consumption during its fabrication and its disposal. In addition, the directive addresses further ecological aspects like saving resources through an economic material usage and avoiding hazardous substances.

Green IT

To save the environment, information technology and communications equipment has to economize on energy and resources throughout its life cycle. To meet these requirements, it is important to optimize the equipment during the development stage. For this purpose, the precision power meter LMG95 is a helpful tool for every R&D engineer.

SPECpower_ssj2008

The Standard Performance Evaluation Corporation (SPEC) is a working group of well-known manufacturers of computer systems. SPEC has created the industry standard SPECpower_ssj2008. This is a method for measuring computing power, electrical power consumption and energy efficiency. The abbreviation ssj (server side JAVA) refers to the workload on the server which is reduced in steps of 10% starting at 100% (full utilization) to zero (no load) (see picture). SPECpower_ssj2008 requires that a power meter records the power consumption with a time resolution of 1 second and logs the data into a control system.

ZES ZIMMER® power meters (LMG95 for single-phase, LMG450 and LMG500 for multi-phase applications) meet this standard. Due to their range dynamic, they are able to precisely capture changes of the load, e.g. when changing to another workload. Moreover, they do not only transmit the measuring value, but also the respective measuring range and its utilization, so that the measuring uncertainty can be calculated for each period. ZES ZIMMER® LMG-series power meters have been approved by SPEC.

Limitation of standby power consumption

The regulation 1275/2008 released by the European Commission defines limits for power consumption of household appliances for the “off”-mode and a defined standby mode. From January 2010 these limits are 1W respectively 2W, and from 2014 the limits will be cut to half to 0.5W respectively 1W.

In case of an ohmic load a voltage of 230V and an acceptable power loss of 0.5W implies a current of about 2.2mA. 2% accuracy of 0.5W equals an uncertainty of 10mW, which seems to be easy to handle by most power meters. However, in practice standby circuits usually have a low power factor and a high crest factor. Assuming that the power factor is 0.1, which is rather common for applications like refrigerators or PC monitors, the current is 10 times larger than in the example above, and hence the measuring range also needs to be increased by this factor.

The crest factor of a state-of-the-art “zero-watt PC” can reach values of 6 or higher due to its rectifier with smoothing capacitor. These peaks superimpose the capacitive reactance current and yield the main contribution to the standby consumption, and therefore the measuring range has to be increased by an additional factor. In this example, the measuring range must measure a current of 22mA, with a peak value of 130mA.

The low power factor and the high crest factor can increase the measuring uncertainty by the order of two, and hence the power meter must have a basic accuracy of 0.03%.
The LMG95 meets these high-end requirements. To optimize the scaling and to protect the unit, ZES ZIMMER® recommends using an additional external shunt (L95-SH-xxx-P). For low currents, it is best to use the current-correct measurement.

For more information see ZES ZIMMER® application note #102 “Measurement of standby power and energy efficiency”. The application note can be found at www.zes.com.

ZES ZIMMER® can offer a software “CE-Test Standby” for measuring and logging data regarding EN/IEC62301. Please ask for details.

Technical Data

Voltage measuring ranges

<table>
<thead>
<tr>
<th>Rated range value /V</th>
<th>6</th>
<th>12.5</th>
<th>25</th>
<th>60</th>
<th>130</th>
<th>250</th>
<th>400</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible trms value /V</td>
<td>7.2</td>
<td>14.4</td>
<td>30</td>
<td>60</td>
<td>130</td>
<td>270</td>
<td>560</td>
<td>720</td>
</tr>
<tr>
<td>Permissible peak value</td>
<td>12.5</td>
<td>25</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>800</td>
<td>1600</td>
</tr>
<tr>
<td>Overload capability</td>
<td>1500V for 1s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td>1MΩ, 20pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current measuring ranges

<table>
<thead>
<tr>
<th>Rated range value /A</th>
<th>0.15</th>
<th>0.3</th>
<th>0.6</th>
<th>1.2</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible trms value /A</td>
<td>0.3</td>
<td>0.6</td>
<td>1.3</td>
<td>2.6</td>
<td>5.2</td>
<td>10</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Permissible peak value</td>
<td>0.469</td>
<td>0.938</td>
<td>1.875</td>
<td>3.75</td>
<td>7.5</td>
<td>15</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Overload capability</td>
<td>160A for 1s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td>5mΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage inputs for current measuring with shunt / transducer

<table>
<thead>
<tr>
<th>Rated range value /V</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible trms value /V</td>
<td>0.06</td>
<td>0.13</td>
<td>0.27</td>
<td>0.54</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Permissible peak value</td>
<td>0.0977</td>
<td>0.1953</td>
<td>0.3906</td>
<td>0.7813</td>
<td>1.563</td>
<td>3.125</td>
<td>6.25</td>
<td>12.5</td>
</tr>
<tr>
<td>Overload capability</td>
<td>250V for 1s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td>100kΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measuring range selection

- Auto, manual or remote control

Isolation

Current and voltage path are isolated against each other and may float against earth with 1000V/CAT III

Measuring method

Simultaneous sampling of the current and voltage inputs and A/D conversion of the instantaneous values (100kHz).

Measuring cycle, synchronization, averaging

For measurements of the trms values for current, voltage and active power, the measuring cycle time is adjustable in the range from 50ms to 60s. In each measuring cycle gapless 100kHz sampling and evaluation. The synchronization can be performed on the measuring signal, the fundamental harmonic, the envelope, the mains or an external signal. Averaging over 1 to 1000 measuring cycles

Measuring uncertainty (Standard version)

<table>
<thead>
<tr>
<th>Measuring uncertainty</th>
<th>DC</th>
<th>0.05…15Hz</th>
<th>15…45Hz</th>
<th>45…65Hz</th>
<th>65Hz…1kHz</th>
<th>1…3kHz</th>
<th>3…15kHz</th>
<th>15…50kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>0.02±0.06</td>
<td>0.02±0.04</td>
<td>0.015±0.03</td>
<td>0.01+0.02</td>
<td>0.015+0.03</td>
<td>0.03+0.06</td>
<td>0.1±0.2</td>
<td>0.5±1.0</td>
</tr>
<tr>
<td>Current</td>
<td>0.02±0.06</td>
<td>0.02±0.04</td>
<td>0.015±0.03</td>
<td>0.01+0.02</td>
<td>0.015+0.03</td>
<td>0.03+0.06</td>
<td>0.1±0.2</td>
<td>0.5±1.0</td>
</tr>
<tr>
<td>Shunt voltage input</td>
<td>0.02±0.06</td>
<td>0.02±0.04</td>
<td>0.015±0.03</td>
<td>0.01+0.02</td>
<td>0.015+0.03</td>
<td>0.03+0.06</td>
<td>0.1±0.2</td>
<td>0.5±1.0</td>
</tr>
<tr>
<td>Active power</td>
<td>0.03±0.06</td>
<td>0.035±0.04</td>
<td>0.025±0.03</td>
<td>0.015±0.01</td>
<td>0.025±0.03</td>
<td>0.05±0.06</td>
<td>0.2±0.2</td>
<td>1.0±1.0</td>
</tr>
</tbody>
</table>

Measuring uncertainty (500kHz version, Option L95-06-1)

<table>
<thead>
<tr>
<th>Measuring uncertainty</th>
<th>DC</th>
<th>0.05…15Hz</th>
<th>15…45Hz</th>
<th>45…65Hz</th>
<th>65Hz…1kHz</th>
<th>1…3kHz</th>
<th>3…15kHz</th>
<th>15…100kHz</th>
<th>100…200kHz</th>
<th>200…500kHz</th>
<th>500…500kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>0.02±0.06</td>
<td>0.02±0.04</td>
<td>0.015±0.03</td>
<td>0.01±0.02</td>
<td>0.015±0.03</td>
<td>0.03±0.06</td>
<td>0.1±0.2</td>
<td>1.0±2.0</td>
<td>3.0±3.0</td>
<td>4.0±4.0</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>0.02±0.06</td>
<td>0.02±0.04</td>
<td>0.015±0.03</td>
<td>0.01±0.02</td>
<td>0.015±0.03</td>
<td>0.03±0.06</td>
<td>0.1±0.2</td>
<td>1.0±2.0</td>
<td>3.0±3.0</td>
<td>4.0±4.0</td>
<td></td>
</tr>
<tr>
<td>Shunt voltage input</td>
<td>0.02±0.06</td>
<td>0.02±0.04</td>
<td>0.015±0.03</td>
<td>0.01±0.02</td>
<td>0.015±0.03</td>
<td>0.03±0.06</td>
<td>0.1±0.2</td>
<td>1.0±2.0</td>
<td>3.0±3.0</td>
<td>4.0±4.0</td>
<td></td>
</tr>
<tr>
<td>Active power</td>
<td>0.03±0.06</td>
<td>0.035±0.04</td>
<td>0.025±0.03</td>
<td>0.015±0.01</td>
<td>0.025±0.03</td>
<td>0.05±0.06</td>
<td>0.2±0.2</td>
<td>1.0±1.0</td>
<td>2.0±2.0</td>
<td>6.0±3.0</td>
<td>7.0±4.0</td>
</tr>
</tbody>
</table>
Technical Data

Measuring uncertainty of cos

Measuring uncertainties based on:

1. sinusoidal voltage and current
2. ambient temperature 23 ± 3°C
3. warm up time 1h
4. definition of power range as the product of current and voltage range, 0 ≤ |U| ≤ 1, λ = P/S (power factor)
5. calibration interval 12 months

Other values

All other values are derived from the values for current, voltage and active power. Accuracies for the derived values depend on the functional relation (e.g. S = I * U, ∆S/∆I = ∆I/∆U)

Internal time base

±100ppm

Frequency measuring

0.05Hz...500kHz ±0.01% of measuring value, measuring channel selectable

Display of measured and computed values

Representation
With standard abbreviation of measured magnitudes, numeral values up to 6 digits (0...999999), with sign, decimal point and unit

Voltage, current
Trms value, peak values (min, max, pp), rectified value (rect), mean value (dc), trms value of ac component (ac), crest factor, form factor

Power
Active power (P), reactive power (Q), apparent power (S), phase angle (ψ), power factor (λ)

Impedance
Amount (Z), real and imaginary part of resistor in serial equivalent circuit

Integrated values depending on the measuring time

The integration can be controlled manually, automatically using start and stop times, via external trigger or remote controlled via computer interface

Energy, charge
Active energy (Ep), reactive energy (Eq), apparent energy (Es), charge (q)

Date and time, measuring time
Current date (day, month, year) with time (hours, minutes, seconds), accurate real time clock, start time for measurement, running measuring time, on-time, each with days, hours, minutes, seconds

Adjustable parameters
Scaling factors for external shunt, current and voltage transducer

Synchronization
Synchronization is made on the periodicity of the measured signal. Periodicity can be determined by the signals u(t), i(t), p(t), u(t), i(t), p(t), each of them can be adapted with selectable filters. By this stable displays also with pulse width modulated signals (e.g. frequency inverter) and amplitude modulated signals (e.g. electronic ballast). Synchronization also by „Line“ and „External“

Scope function
Graphical representation of sampled values (waveform of the signal)

Plot function
Time diagram of calculated values, e.g. trms value and power

Harmonic analysis CE-Hrm
Analysis of current and voltage up to the 40th harmonic (total of 41 with DC component), fundamental in the range 45Hz to 65Hz. Analyzer in accordance with EN61000-4-7 with evaluation in full compliance with EN61000-3-2/-12

Harmonic analysis HRM100
Analysis of current, voltage and active power up to the 99th harmonic (total of 100 with DC component, max. 10/50kHz), fundamental in the range 0.1 Hz to 1.2 kHz; adjustable divider (1...50), a new fundamental can be set as a reference, for example to determine interharmonics

Flicker measuring
Flicker meter in accordance with EN61000-4-15 with evaluation in accordance with EN61000-3-3/-11

Memory extension
Memory extension for scope function up to 4 millions samples of U, I and P. Sample values available via interface

Transients – monitoring and storing
Storing and graphical displaying of transients with a resolution of 10µs, memory extension (L95-011) is included. Storing depth is 4 Millions sample values, selectable recording duration from 0.05 to 60 seconds. Adjustable pre-trigger, different possibilities of triggering

Computer interface (Option L95-01)
Interfaces: RS232 and IEEE488.2, only one interface can be used at the same time

Remote control
All functions can be remote controlled

Output data
Output of all displayable data possible, data formats of all interfaces are the same, SCPI command set

Printer interface
Parallel PC-printer interface with 25 pin SUB-D socket for printing of values, tables and graphics

Processing signal interface (Option L95-03)
25 pin SUB-D socket:
4 analog inputs for registration of auxiliary quantities (16bit, ±10V)
4 analog outputs (16bit, ±10V) for output of:
• various measure values and operands; updated at the end of each measuring cycle
• signal samples (i,u,p), synchronous to the 100kHz sampling frequency
4 digital inputs for registration of status
4 digital outputs to signal states and alarms
1 input for frequency (0.1Hz...500kHz) and direction (e.g. of motors)
1 power supply output: 12V/50mA

Other data

External synchronization/trigger
Isolated interface for external control of measurement cycle and integration times, outputs for status signals about the actual measuring

Service RS232 Interface
For installing options, firmware and for instrument diagnosis

Auxiliary power supply output +15V/0.4A and -15V/0.2A for external transducers

Dimensions/weight
Desktop case, (w)320mm x (h)147mm x (d)274mm, subrack 84PU, 3HU, (d)274mm, about 5.5kg

Protection class
IP20 acc. to EN60529

Supply
90...250V, 45...65Hz, about 30W
Measurement Accessories and Extensions

"Plug N'Measure" current sensors for extended current ranges up to 5000A

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>DC/AC Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision DC</td>
<td>DC...1MHz</td>
<td>0.02% DC...1MHz 0.8A...5000A</td>
</tr>
<tr>
<td>Precision AC</td>
<td>AC...5kHz</td>
<td>0.02% AC...5kHz 5A...500A</td>
</tr>
<tr>
<td>Clamp on CT</td>
<td>AC...5kHz</td>
<td>0.15% AC...5kHz 0.3A...3000A</td>
</tr>
<tr>
<td>Wideband AC</td>
<td>AC...1MHz</td>
<td>0.25% AC...1MHz 10A...1000A</td>
</tr>
<tr>
<td>Low-cost Hall</td>
<td>DC...200kHz</td>
<td>0.3% DC...200kHz 0.3A...2000A</td>
</tr>
<tr>
<td>Shunt for standby measurements</td>
<td>DC...1kHz</td>
<td>0.15% DC...1kHz 0.15mA...1A</td>
</tr>
</tbody>
</table>

HF-differential transformer with load resistor for almost reactionless measurement of current, e.g. at discharge lamps.

Technical data, information and selection guide in the user manual „ZES Sensors and Accessories“ (available on request and at www.zes.com).

Precision high voltage divider

Precision high voltage divider for 3/6/9/12/30kV up to 300kV, 0.05%.

- 1-channel HST for single ended voltages
- 2-channel HST for floating voltages (difference measuring)
- 3-channel HST for three phases systems (inverters)

Power quality analysis in railway technology and medium-voltage systems. Insulation diagnostics by tan δ measuring down to 0.1Hz. Suitable for outdoor application (IP65) with high overvoltage.

Other accessories and special versions/designs

- LMG-MAK1, LMG-MAS1 U/I measuring adapter for safety plugs
- L5-TOBOX-X /-F Adapter (rail mounting) for easy connection of process signals, including 2m connection cable
- L95-Z01 Kit to mount LMG95 into industrial cabinet
- LMG95 application software (optional)
 - LMG-CONTROL-B PC software for data transfer, configuration and visualization. Modular design. Saves and loads device configurations. Interactive mode to set up a measurement. Recording and logging of data with timestamp accurate to the milliseconds. Analysis modules for different applications and evaluations. Basic version is free of cost and available at www.zes.com.
 - LMG-CONTROL-WA Additional module for LMG-CONTROL, logging and analysis of all sampling values of the LMG, harmonic analysis up to 50kHz, frameanalyser, recording of transients.
 - CE-Test61k Control/data logging/evaluation software for conformity tests of harmonics and flicker according to EN61000-3-2/-3/-11/-12 with the LMG95
 - CE-Test Standby PC software for standby measuring according to EN/IEC62301
 - LabVIEW-Driver LMG95 driver for LabVIEW 8.2, for RS232- and IEEE488.2-interface, with software examples. Driver is free of cost.

Subject to technical changes, especially to improve the product, at any time without prior notification.

United States
ZES ZIMMER Inc.
4808 Santa Monica Ave. • San Diego, CA 92107
Phone +1 760 550-9371
www.zes.com • usa@zes.com

Germany (headquarter)
ZES ZIMMER Electronic Systems GmbH
Tabaksmühlenweg 30 • D-61440 Oberursel
Tel. +49 6171 628750 • Fax +49 6171 52086
www.zes.com • sales@zes.com